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The conventional use of the double torsion test to measure the rate dependence of 
crack growth is here subjected to a critical re-examination. Following from a series 
of such tests on polyesters, this examination was motivated by misgivings on the role of 
crack front curvature in undermining the geometry-independence of the results. Working 
through a successful prediction of the crack shape from simple (but experimentally 
justified) geometric considerations, an analysis leads to a general relation describing 
the distortion of the measured fracture toughness versus crack speed characteristics in 
terms of a single, measurable crack shape factor. 

1. I n t r o d u c t i o n  
The work reported here originated in a series o f  
double torsion (DT) tests on thermosetting poly- 
esters. This type of test - whose development can 
be traced to work by Outwater and Murphy [1] 
and by Kies and Clark [2] - h a s  since become a 
widely used method of investigating crack growth 
in rate-dependent systems. The rate dependence 
may arise from transport phenomena in an aggress- 
ive environment [3], from inherent visco-elasticity 
in the material itself [4], or from both [5], but it 
normally causes behaviour steady enough to 
permit a quasi-static analysis. Nevertheless, use 
of the test has been extended into regimes of 
unsteady, unstable behaviour such as "stick-slip" 
crack growth, notably in epoxies [6, 7], but also in 
polymer/environment systems [5]. Our own use of 
the test was focused on the interesting instabilities 
observed under some circumstances when using 
the DT method to evaluate fracture toughness 
(K~) against crack velocity (d) curves. 

The attraction of the DT test lies in its apparent 
simplicity. It allows a displacement-controlled 
machine (such as the screw-driven Instron type) 
to be used to drive a crack through the specimen, 
at any desired constant speed, for a convenient 
distance (nearly 100mm in our own tests). All of 
the readings normally required can be derived 
from the resulting load-displacement curve. The 
resistance, R, of the material to a propagating 
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crack - expressed as strain-energy release rate, 
Go, or fracture toughness, K e - is then plotted as 
a function of the crack velocity as measured or 
(more commonly) as calculated from the cross- 
head speed and force, and the crack-length deriva- 
tive of specimen compliance. This convenient and 
straightforward test is, unfortunately, marred by 
an intrinsic fault: the propagating crack front is 
markedly curved. As a result, the crack velocity as 
measured conventionally does not have any un- 
ambiguous physical interpretation as the basis for 
a unique material response, and the  derived 
Ke(~ ) or Ge(d ) curves do not represent geometry- 
independent material properties. The object of this 
paper is to derive a working analytical description 
of  the DT crack-front shape, and to use it to 
remove this ambiguity. 

The supporting arguments exhibit an emphasis 
on the geometry of deformation near the crack 
front, rather than on the material's response to 
any measure of the local stress. This viewpoint can 
be illuminating, even at a very basic, heuristic 
level. Previous analysis of crack-front shapes has 
generally incorporated, explicitly or otherwise, 
the assumption that K~ during propagation (and 
thus K at any subcritical load) is constant along 
them. That this is insufficient to locate the front 
is easily demonstrated by considering the stability 
of a small perturbation in it, perhaps a part- 
circular advance from an otherwise straight section. 
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Whatever abstraction from the stock of available 
K solutions is chosen to represent this situation, 
it is clear that K at the tip of this "salient" will 
exceed the global value. Propagation will hence- 
forward initiate at this point - a recipe for 
instability. 

What has been overlooked here is that any crack 
front is very much a three-dimensional object. A 
finite opening displacement always exists near the 
tip of a propagating crack: the fracture surfaces 

sweep inwards towards the nominal (median) 
crack plane, meeting almost perpendicular to it. 
Because only on this line of intersection is any 
surface created, local advance of a small salient on 
it is coupled to distortion of the entire connected 
surface. Since (at least outside the immediate 
vicinity of the tip) this surface is the boundary of 
an elastic continuum, its constraint to a necessarily 
smooth and continuous geometry guarantees that 
of the crack front. Choosing a local co-ordinate 
system ( x , y )  in the crack plane, the front can be 
described by a function: 

y = F ( x , t ) ,  

whose partial derivatives with respect to x and 
to time t (denoted by a superior dot) exist every- 
where along it. 

Local crack advances which are spurious to 
changes in the geometry of the surrounding 
continuum thus annihilate rather than perpetuate 
themselves. This viewpoint can, under some 
circumstances, be followed a step further, and the 
actual local stress concentration due solely to the 
crack front deemed to have no effect on this 
geometry: the interaction is one-way, the front 
visualized as a purely geometric entity conforming 
passively to a pre-existing displacement field. It is 
not suggested that this approach, which yields a 
closed solution here, will always be equally success- 
ful, The criterion of its usefulness will generally be 
that elastic displacements are large (the specimen 
compliance high) relative to the crack size. 

The DT specimen fulfils this requirement and, 
certainly, the search for a uniform-K crack profile 
has not supplied a closed solution: merely, as 
for its localized use above, a paradox. Using 
finite element analysis, it can be shown that the 
existence of such a profile is at least possible 
[8]; however, if K c is a function of the local 
"radial" crack speed, K will then vary along 
it as it translates. The a priori assumption that 
this cannot be so leads to the conclusion that 
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the DT crack shape depends directly on the Kc 
against crack speed function [9], but, ultimately, 
this argument predicts the prof'fle for a rate- 
independent K e to be a straight line. This contra- 
dicts the finite dement solution and conflicts 
with results presented below. These results will 
thus be used both to illustrate the conventional 
DT analysis (and its overall predictive success), 
but also to motivate its ensuing modification. 

It remains an article of faith here that the rate- 
dependence of fracture in any material is uniquely 
expressed in the variation of its crack resistance 
(the work irrecoverably absorbed in creating unit 
projected area of crack surface) with crack speed. 
Since any point on a moving crack front is an 
event, having no persistent identity, the definition 
of "crack speed" in general can be freely chosen 
on an ad hoc basis. However, the focus of interest 
here is a rate-dependence originating in processes 
very local to the crack tip, so that only a definition 
which expresses their rate in a co-ordinate-free way 
will suffice. This must be a scalar multiple (we 
choose unity) of the velocity ~ of the crack front 
along its local normal ~ in the material. Thus 
(Fig. 1): 

= ,r r (1) 
where [ sine = l + \ ~ x ] ]  (2) 

In quasi.two-dimensional geometries, such as the 
DT type, the front shape function F is usually 
collapsed into a vector, a, whose time derivative 
(the "crack velocity") is readily yielded by analysis 
or observation: but some important information is 
lost in the process. Only for a translated crack 
shape f(x): 

F ( x ,  t) = a + f(x),  (3) 

/ 
Y 

y--F(x,t) ~ x 

Figure 1 Propagation of a curved crack front. 



are fi  and h the same, and only for a straight front 
orthogonal to a ( f =  0, the true two-dimensional 
case) is a an invariant (scalar) measure of  the 
fracture process rate. 

2. Double torsion testing 
2.1~ The basic analysis 
We can begin a more detailed examination of the 
DT test by presenting, for reference, its conven- 
tional analysis. The specimen geometry and its 
notation are shown in Fig. 2; the side grooves, a 
practical detail necessary to restrain the crack 
path to the centreline, are assumed sufficiently 
shallow to leave the torsional rigidity of each beam 
unaffected. There is assumed to be a constant 
angle of twist dO/dy from the loading point 
(v = 0, 0 = 0p) to the crack tip (y = a, 0 = 0t), 
where 0 is the rotation of each beam. 

I f  this rotation remains small, it is linear with 
the applied moment M ([ 10], p. 309): 

dO 2(1 + v) 1 
dy - E ZHB5 M, (4) 

where 
PD 

2 '  

and Z is a tabulated function of (H/B), tending to 
1/3 as this ratio becomes large. E and v are the 
elastic modulus and Poisson's ratio. Thus: 

~ r 

J 

~ ~ S i d o g f ' o o v e . .  

Crack shape: 
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Figure 2 The double torsion test. 
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At this point, it is usual to assume that both 
torsion beams are effectively built-in at the crack 
tip, but this is unnecessary. It is sufficient (and 
far more realistic) to assume the "ligament" 
( L - - a )  to have a torsional compliance, Cot, to 
to the moment transmitted by each beam, which 
is finite but independent of a. This implies that 
the deformation system in the ligament is local- 
ized at the beam roots. In practice, this root 
compliance seems to remain constant until the 
ligament is reduced to about H, rising rapidly 
thereafter. 

Thus, for (L -- a) > H, the beam root rotation is: 

PD 
o ,  = -~- Cot, (6) 

and that at the loading plane is: 

PD (1 + v) PD 
Op = ~ - C o t +  E ZHB 3a" (7) 

Converting to a linear load-point compliance, 
C - v/P, gives: 

(1 + v) D 2 
C = C t + T Z H B  3a' (8) 

where Ct =-�89 and is therefore constant 
under the conditions akeady stated. 

It is well known that for a small virtual exten- 
sion of the crack, the elastic energy release rate 
will be: 

p2 (dC/da) 
O -  2 (dA/da)' (9) 

where A is the area of fracture surface. For a 
straight crack front orthogonal to a, (dA/da) = Be, 
and it can be assumed that all of  the strain energy 
released during crack extension under a load Pe is 
immediately absorbed uniformly in the creation of 
fracture surface. This reveals the crack resistance 
R as: 

and, from Equation 8, the compliance derivative 
is seen to be independent of a: 

dC (1 + v) D 2 
da - E ZHB 3' (11) 

so that: 
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P~ (1 +u )  D 2 
Gc - 2B c E ZHB 3" (12) 

Conversion to a critical stress-intensity factor, 
the fracture toughness, Ke, can be accomplished 
through the equations: 

Kc = [EGe] ~, (13a) 

for plane stress, or 

l 
Ke = (13b) 

for plane strain conditions. 
Consider now the situation in which the load 

points are driven together at a constant speed 7), 
causing propagation of the crack along y at a 
velocity: 

. d a  
it = v - - .  (14) 

dv 
Since C =- v/P: 

d C _  1 Pc-~  - v  (15) 
da P~ 

so that: 
dC+ c---~ (16) i t = i , ~  C d a 

For steady-state propagation of the crack, Pc is 
constant and Equation 16 reduces to: 

The conditions under which steady-state crack 
propagation will take place depend on the nature of 
the material's time dependence. If E and R (thus 
Ge) are monotonically increasing functions of (or 
are independent of) rate, Equations 12 and 16 
show that stability is ensured, any change in Pc 
being self-correcting. Testing a series of specimens 
at different cross-head speeds, and using these 
equations and independent evaluations of E and v, 
then allows toughness to be plotted as a function 
of crack velocity. If, however, toughness decreases 
with increasing rate, then Pc will fall as h increases 
which - as Equation 16 shows - will engender 
instability, and the technique becomes difficult or 
indefinite in use. In practice, modest inverse 
rate-dependence raises only minor problems. 

2.2. Experimental details 
The DT technique was used to derive Kc against 
crack-velocity curves for eight thermosetting 
polyester resins specially made and supplied by 
BP Chemicals Limited. Only illustrative, but 
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representative, results from three of these will be 
quoted here: one orthophthalic resin, Cellobond 
A360/157, and two isophthalics, Cellobond 
A273/301 and A283/270. These were character- 
ized by tests to establish the yield stress, py (in 
compression on barrel-shaped specimens, at three 
strain rates from 10 -3 to 10 -~sec -1) and by 
modulus measurements in three-point bending, 
also at three strain rates spanning two decades. 

6 mm plates of each resin were cast between 
glass plates, machined into DT specimens with 
dimensions H = 45 nun and B e = 3 mm (Fig. 2), 
and postcured/stress-relieved. These were tested 
in a locating jig (maintaining D = 25 ram) with 
an integral load cell, driven by an Instron frame 
at cross-head rates spanning the four decades or 
so available. Load, P, versus displacement, v, 
plots were recorded - with the aid of a transient 
recorder at high speeds. At low speeds, progress 
of the crack front was monitored by eye and 
recorded on the Ply plot. This information 
normally provided the compliance derivative, 
and a direct measurement of crack velocity for 
comparison with that calculated from Equation 16. 
Provided that the second term in the denominator 
was retained for cases in which load variation 
occurred as a result of variation in Be, agreement 
was excellent - well within 5%. Some materials 
(A360/157, for example) would not sustain crack 
growth at speeds sufficiently low for this type of 
observation, and recourse to a less direct method 
of compliance calibration was necessary. This was 
to cut a progressively longer, straight-fronted 
notch down the crack plane with a hacksaw, and 
to construct a C against a curve from measure- 
ments after each Finite extension. The results 
from these expemnental compliance calibrations 
were applied to other tests on the same material 
by factoring them according to E at the relevant 
rate, thickness B as measured, and their weighting 
in dC/da as revealed by Equation ! 1. 

Fig. 3 illustrates Kc against h curves for the three 
materials. Two of these, A360/157 and A273/301, 
showed stick-slip behaviour at low speeds. Indeed, 
A360/157 was so prone to crack arrest at speeds 
of less than 1 mm sec -~ that the subsequent jump 
usually broke the specimen, making testing very 
difficult; dubiously high initiation values are not 
quoted. 

More relevant here is the instability of crack 
propagation shown by tests in regimes with a 
falling Kc against it characteristic. These were 
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easily identifiable (providing a lot of the extra 
information needed to plot smooth curves through 
the data points) by the tendency of the crack to 
propagate at two - sometimes more - distinct, 
alternate velocities, the overall velocity being their 
time average. This phenomenon was sometimes 
noticeable during testing as a regular jump of a 
millimetre or so, after perhaps five millimetres 
of  growth at a uniform, lower rate: but it seldom 
registered significantly on the load/displacement 
chart. At higher rates, this instability caused a 
characteristic "unzipping" sound during fracture. 
Under other conditions, the two speeds were so 
similar as to make direct observation difficult, 
but, as for all cases of  this type of behaviour, the 
exposed fracture surface showed a banded struc- 
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F i g u r e 3  Fracture toughness as a function of crack 
velocity in DT tests: (a) CeUobond A360/157; (b)Cello- 
bond A273/301; and (c) Cellobond A283/270. 

ture (Fig. 4) of alternating textures. Tests under 
conditions of Ke constant or rising with fi always 
revealed uniform surfaces. 

As well as increasing the resolution of data into 
a composite curve, this interesting phenomenon 
clearly marks many successive positions of the 
crack front. The best of these 'banded surfaces 
were metallized to aid observation, and photo- 
graphed at a magnification of about 12. The 
photographs were assembled into lengths of up 
to 15 crack widths, and provided a rich source 
of data on the crack shape as it developed along 
the specimen. 

2.3. Effects of crack- f ront  curvature 
Fig. 5 is a typical section from one of these com- 
posite surface micrographs; obviously, the straight 
crack front assumed by the conventional analysis 
is far from a realistic representation. The actual 
profile meets the lower surface at some angle less 
than 90 ~ , and sweeps back to approach the upper 
surface asymptotically. 

In essence, the effects of crack curvature on 
the overall deformation system will be those of 
the additional tractions exerted on what would 
have been the crack face, for y < a, if the front 
had been straight. These will exert a moment at 
any section which will resist that applied by the 
load, and will accumulate~ causing the section 
moment to decay, from y = 0 to y = a. Thus, 
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Figure 4 Bands of varying texture on fracture surface, 
indicating speed instabilities in a DT test. Crack velocity 
is to the left on lower surface. 

from Equation 4, the angle of twist will also decay, 
reducing the apparent load point compliance Ct 
of the ligament. This effect on Ct should be 
observed by comparing results from the two 
calibration methods described in Section2.2, 
using straight and curved fronts. 

Fig. 6 shows C against a curves from a natural 
crack and from a saw-cut notch in A283/270, and 
Table I summarizes results from these and from 
another specimen in which a natural crack was 
driven at a different velocity. These have been 
corrected for rate and thickness variations: note 
the assumption that Ct, as well as the torsion beam 
compliance, varies as B -3. The remaining differ- 
ences become even less significant if it is noted 
that test 2 was generally more reliable, having been 

carried out at a slower cross-head speed, and 
having revealed a constant-Pc characteristic (unlike 
test 4, whose trace was slightly distorted by 
variation in Be). It can be concluded that the two 
compliance calibration methods do not produce 
significantly different results. 

3. Further analysis of the DT test 
3.1. Crack shape 
Thus, the reduction in C t due to crack-front 
curvature is insignificant, compared to the total 
compliance at normal crack lengths. This strongly 
suggests that the torsional stiffness at any section 
is primarily determined by the geometrical proper- 
ties of that section, so that the angle of twist 
remains constant along the crack length and deter- 
mines the beam separation at the crack plane. One 
further assumption facilitates crack-shape predic- 
tion: that this separation is a constant, 5~, along 
the front. The underlying hypothesis, that the 
near-tip section geometry and deformation in 
elastic response to its associated stress concen- 
tration remains constant, can be tested against 
reality by comparing the actual crack shape and 
with that predicted (as at the end of this section), 
and by comparing evaluations of 6f with estimates 
of the critical crack tip COD, ~e (as in the next 
section). 

Fig. 7 shows the assumed geometry of the 
specimen's deformation, and that of the crack 
plane. A fulcrum point, y = a  + S B e ,  is intro- 
duced, at which the rotation 0 extrapolates to 

Figure 5 Reduction from a typical composite DT fracture surface micrograph, showing many successive crack-front 
positions. 
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Figure 6 Compliance against crack-tip position in a DT specimen of Cellobond A283/270: (a) natural (curved) crack 
front; (b) artificial straight-fronted notch. 

zero. Thus: 

ocv) = (a + sBr 

Now, let displacements in the crack plane be given 
by a simple rotation about a hinge half-way from 
the crack front to the upper edge of  the crack 
plane (Fig. 7b). The separation 8 is then: 

, . , )  20 )(x 
= - 1 ( ~ : } 8 c  D-" 

(18) 

On the crack front F, 8 = Be, and so: 

vb [ F(x)  ] (19) 
6f = -~  1 (a + SBe) ' 

while on the lower surface (x = b = Be,F(x ) = a): 

 20, 
6~ = ~D-- 1 (a +-SB e . 

Eliminating (a + SBe) from Equations 19 and 20 
gives the crack shape: 

s(x) = aBo [ ~ x - w ,  ] 7 -  ,,~ - - -~,]  �9 (21) 

Normalizing co-ordinates against the crack path 
width, we put: 

T A B L E I C and dC/da for natural cracks (NC) and a straight saw-cut crack (SC) in A283/270 DT specimens 

Specimen Method C t dC/da Cross-head Thickness, Modulus, (EB 3) Ct 
number (~m N -1) (MN -1) speed, 7) B (ram) E (GPa) (ram 2) 

(ram rain- i ) 

(EB 3) (dC/da) 
(ram) 

DT189-2 NC 3.22 83.9 0.05 5.87 3.59 2340 60.9 
DT189-4 NC 3.13 75.5 0.25 5.97 3.63 2420 58.3 
DT189-12 SC 2.84 75.8 0.5 6.01 3.70 2280 60.9 
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,.. Fulcrum plane {0=0) (G) "t 

Figure 7Defo rma t ion  of (a) the  DT specimen, and 
(b) its crack plane. 

a - - F ( x )  
F* - - - ,  (22) 

Be 

x 
(23) 

B e  ' 
X* ~- 

and 

A - -  

and obtain: 

F*(x*)  = 

~ o  
B2 , (24) 

aa[(l/x*)- 1] 
(25) ( v - ~ )  

Note that, as would be expected, the crack front 
never intersects the upper surface of its nominal 
path; at y = 0: 

* ABe (26) Xp = ' 
V 

Now, from Equation 2, 

(v  - ~ o ) x  .2  
sin ~b = [AZa 2 + (v -- ABe)2x .4] v2 , (27) 

and the crack velocity at a given x* is, from 
Equation 22: 

F(x*) = ~--B~fi*(x*), (28) 

which, from Equation 25, becomes: 

P(x*) = [ (vx*-  ~ ) a  
/ 
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~c(1-X*)ai~]/x,(v-~0. + (v-~c) 
(29) 

The crack speed is therefore, from Equation 1 : 

[(v - a&)2x *" + a2A2]L (30) 

Clearly, it is worth looking for a way to simplify 
these expressions. This can be found in the demon- 
strated success of the "simple" theory (assuming 
a straight crack front) in predicting the crack- 
length derivative of compliance, its independence 
of crack length over the central half or so of its 
path, and the consequent constant velocity of a 
crack driven by steady cross-head displacement. 
The revised theory must be consistent with these 
observations. 

Rearranging Equation 20, we obtain: 

v = ~ + B  e A. (31) 

Only ff S is constant can this expression be 
reconciled with Equation 16, which successfully 
predicts the observed proportionality of ~ and b. 
With this assumption, Equation 31 differentiates 
t o :  

zxh 
/; S ' (32) 

and things get much simpler. Substituting Equation 
31 into Equation 27 yields: 

X*2 

s in  r - (S  2 + x , 4 ) , / 2  , ( 3 3 )  

illustrating that the crack shape is independent 
of a under these circumstances, simply translating 
along the specimen in the wake of the advancing 
tip. From Equations 25 and 31, this shape is: 

F* = S ~ - -  , (34) 

and its intersection point at the loading plane is: 

S 
* = ( 3 5 )  xp [S + (a/B~)]" 

S is now revealed as a single scaling parameter 
characteristic of the particular test - a "crack- 
shape factor". Although for a given cross-head 
displacement and crack length an infinite number 



of constant 6t contours exist, S replaces 6f, and a 
measure of the beam torsion, in fixing one of 
them. Its independence of crack length is a result 
of the constancy of fracture load and of the beam 
root compliance Ct (it is related to their product), 
since together these ensure that the entire defor- 
mation system translates unchanged along the 
specimen. The issue of  the physical interpretation 
o f r f  will be returned to in the next section. 

S is easily measured from arrest marks or 
banding on the fracture surface; some latitude 
exists in choosing a method for doing so. Equation 
34 shows that the crack front intersects the crack 
plane centreline (x*=  �89 at F *  = S ,  so that the 
crack front lags its tip by S B  e at this point (Fig. 2). 
Several reasons make this apparently obvious 
method by measuring S unsatisfactory in practice. 
Plane stress effects near the specimen boundary 
sometimes obscure the surface markings, and may 
affect the material separation mechanics. Further- 
more, the assumption underlying the analysis 
- that the angle of twist in the torsion arms 
is unaffected by tractions acting in the crack 
plane - is progressively less realistic as the tip is 
approached. The evaluation technique was adopted 
to measure the axial ~ )  distance, h, between the 
half-width and three-quarters-width points on 
the front; since: 

F * ( x *  = 0.5) - - F * ( x *  = 0.75) = ~S, 

this leads to: 
S = 1 . 5 h / B  o. (36) 

Fig. 8 shows S as a function of crack-tip position 
as propagation progresses for two materials, 
A360/157 and A273/301, showing, respectively, 
unusually high and fairly typical average values. 
In each case, S varies little over the central region 
of the path, in line with the constant crack 
velocity observed. For shorter cracks S is lower; 
for longer ones higher. Probably the most interest- 
ing feature of these measurements is that, par- 
ticularly for A360/157, S values for transitions 
into and out of bands of a particular surface 
texture are consistently different. The possible 
reasons for this will be returned to in the next 
section. 

Fig. 9 shows how the crack shapes measured 
from two tests, normalized against S, compare 
with that predicted by Equation 34. While for 
A273/301, with a lower S value, agreement is 
excellent, it is not so good for A360/157. How- 
ever, substantial divergence from the predicted 
shape is restricted to a region very close to the 
tip; otherwise, a simple axial shift brings close 
agreement. This shift has no other significant 
effects, since the response of the specimen to 
crack translation is akeady established; but its 
necessity emphasizes the importance of evaluating 
S from the crack shape well behind the tip. 

3.2. Deformat ion  near  the  crack f r o n t  
What does S really mean in terms of events near 
the crack front? Some attempt at answering this 
can be made by comparing 6f (a COD value 
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Figure 8 Variation of crack-shape factor S with crack extension: (a) d = 140 mm sec -1 in A360/157; and (b) d = 7.3 mm 
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Figure 9 Predicted and observed crack shapes for the two 
DT tests of Fig. 8. 

extrapolated from elastic deformations of the 
surrounding continuum and measured via S) with 
the critical COD 8 e (a material parameter rep- 
resenting the scale of plastic deformation at the 
crack front). Since measurements of crack velocity 
give values close to those predicted from Equation 
16a, the clusters of constants in Equations 16a and 
32 can be equated to give: 

SB2cPc dC 
f~ - D da " (37) 

All the quantities on the right-hand side are 
readily accessible from DT tests. For the par- 
ticular tests under examination here, the fracture 
load remained substantially constant, and values 
resulting from the S value shown in Fig. 8 are 2.3 
and 2.8pm for A273/301, and 3.8 and 4.4pro 
for A360/157. 

The critical COD values can be estimated from 
the Dugdale model as: 

fc Epy (38) 

although, for two reasons in particular, the esti- 
mate is unlikely to be an accurate one. Firstly, the 
model is only strictly applicable to co-linear plane 
stress plastic zones, or to crazes: neither of which 
is relevant here. Secondly, these materials are 
rate-sensitive, and the relevant rates for py are 

experimentally inaccessible: typically 1500sec -~. 
Using data for the highest rates tested yields 
values for fie of 0.7gm in A360/157 and 0.4gin 
in A273/301. Thus, 8f is several times larger than 
re, the difference reflecting the concentrated local 
elastic displacement field at the crack front. 
Nevertheless, this characteristic size of the crack 
front, which determines the position at which it 
fits into the overall deformation field, is of the 
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same order as that of the process zone. Indeed, if 
the process were predominantly one of slip along 
angled bands, it would be feasible for changes in 
a process dimension to be reflected in changes 
in f~. For these materials, whose Kc value (and 
hence the scale of near-tip elastic displacements) 
is substantially independent of crack velocity, 
there is some tenuous evidence for this. 

It has already been demonstrated that S can 
change abruptly by around 20% as the crack 
speed switches, while the fracture load hardly 
changes perceptibly. Thus, for small crack jumps, 
K e remains substantially constant and, with it, 
the elastic part of the crack-front deformation 
field. The irreversible part characterized by 6e, 

however, does change: this is revealed by the 
transition of surface texture in a banded forma- 
tion (Fig. 4). Nevertheless, the absolute changes in 
f~ (0.6/ma for A360[157 and 0.5pm for A273[ 
301) are of the same order as fc, making it likely 
that there is an elastic component to them. This 
may be possible within a few microns of the crack 
tip (even while Ke, essentially a macroscopic 
parameter, remains constant) if the change in 
process geometry is sufficiently drastic - from 
co-linear crazing to angled slip, to quote an 
extreme example. This whole area promises to 
be an interesting one for further investigation. 

For the time being, S need only be regarded 
as a measurable characteristic of a particular 
DT test. The next section will demonstrate that 
it may still be an essential element in interpret- 
ing K c or G c against h data as a material character- 
istic. 

3.3. Crack speed and apparent 
fracture toughness 

For a translating crack which is curved, the 
measured Gc(h ) characteristic will not generally 
be the true R(~) characteristic [i1]: the released 
strain energy will be absorbed non-uniformly along 
the front, none of which necessarily advances at 
the measured translation velocity ~. An energy- 
balance argument leads straightforwardly to: 

Gc(a) =f~'; R[~(d,x*)] (Ix*, (39) 

and, using the present one-parameter description 
of the DT crack shape, dosed-form solutions for 
the discrepancy are easily derived. 

Since the crack profile is translated, F = ~, and 
Equations 1 and 33 yield the crack-speed profile: 



~'X*2 
- (S 2 + x.4),/2 . (40) 

Fig. 10 illustrates tiffs prof'fle for the two materials 
examined, on a logarithmic scale to correspond to 
the Ke(~ ) data. For A360/157, less than half of 
the surface area is exposed at even a tenth of the 
nominal rate. Substituting Equations 40 and 35 
into Equation 39 gives: 

f ~ R[(&*~)/(S ~ +x*4) "21 dL~* Ge = s/(s+wBc) 
(4I) 

This integration is not particularly straightforward 
in general, but can be reviewed qualitatively for 
two simple cases. 

For a non-time.dependent characteristic: 

R = Ro, (42) 

a constant. Thus, the apparent toughness is: 

a 
Ge = Ro (43) (SB~ + a)' 

which will be negligibly in error if the crack is 
sufficiently long. It was found experimentally, how. 
ever, that values for SB e of 8 mm were sometimes 
observed, yielding a 10% underestimate for G e 
(5% for Ke) over the central region of cracklength, 

A common form of R characteristic for polymers 
(e.g. PMMA [4]) is: 

R(~) = Ro~", (44) 

Normalize# rc~l  ~q~ speed, ~/(~ 

0 
Distance ~:ross crack path, x ~ 

Figure 10 Calculated crack speed across the crack path in 
the two tests of  Fig. 8, 

where, usually, n > 0. The apparent characteristic 
from DT tests then becomes: 

r l  

ac = Ro~"f  x*~"/(S 2 + x*4) "~2 dx*, 
Si(S+a/Be) 

(45) 

compounding the downward (n > 0) shift to a 
total constant factor of: 

G_~ 
= f 1 x*2"/(S 2 + x*4) "n ~* .  

R S/(S+alBc) r 

(46) 

This expression was evaluated by numerical 
quadrature, and results for values of n typical of 
polymers are plotted in Fig. 11. Drastic as this 
correction may be for large values of  n, it is at 
least easy to apply i fS can be measured, and if the 
measured characteristic approximates to one of 
the simple forms (Equations 42 or 44). More com- 
plicated forms of rate dependency, such as those 
suggested by the measured characteristics in Fig. 3, 
present severe difficulties. Definition is lost, 
a downward shift is introduced, and peaks or 
notches are shifted to the right on the crack-speed 
axis. 

4. Conclusions 
(1) "Crack velocity" is a diffuse concept which 
can be fairly freely defined ad hoe. For use as a 
basis on which to plot the rate dependence of 
fracture toughness, however, the only rational 

Appurenf specific surface mergy R' 

n=O 

0"9 

o o 

3O 
&uck-shupe &c~ S 

Figure 11 Effect of crack shape on DT test evaluation of 
G e, for materials with a powerqaw (exponent n) rate 
dependence, 
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definition is as the radial speed of the front, that 
is, the speed of its point of intersection with a 
plane in the material instantaneously normal to it. 

(2) The crack front propagated in a double 
torsion specimen is always markedly curved. 
Although the shape is preserved and merely 
translates axially, the local radial crack speed 
varies along it, casting doubt on the ability of the 
test to reveal a true fracture toughness against 
crack speed characteristic. 

(3) Because the DT specimen is highly com- 
pliant, the crack-front shape can be quite accurately 
located by extrapolating the overall deformation 
system inwards to a point at which a particular, 
constant crack-surface displacement, f~, is implied. 
Full analysis yields a working prediction for the 
resultant crack shape. 

(4) This shape is Fixed by a single parameter, 
the "crack-shape factor" S, which can often be 
measured easily from fracture-surface markings. 
Using this, and other readily accessible test results, 
ff can be calculted. 

(5) Results from tests on polyesters indicate 
that f~ cannot be identified with a "critical COD", 
fe : it is several times larger, the excess representing 
an elastic displacement due to the local crack-front 
stress intensity, as measured by the factor K. 

(6) The implication that a constant K criterion 
seems to govern the crack-front location is not 
really significant, since for these materials, K e 
varies little with crack speed anyway. On the other 
hand, there is some tenuous experimental evidence 
(based on observations of surface roughness) that 
changes in fie also exert an influence on the crack- 
shape factor. Confirmation is contingent on more 
direct measurement of fe- 

(7) From the predicted crack shape, an 
expression is derived which describes how the true 
toughness against crack-speed characteristic is 

modified as it is revealed by DT testing. The 
general effect is an underestimate; the upward- 
sloping exponential characteristics typical of 
polymers are further depressed, and local peaks 
and troughs are shifted to the fight along the 
crack-speed axis. 
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